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Report Title
Coordinated Beamforming for MISO Interference Channel: Complexity Analysis and Efficient Algorithms
ABSTRACT

In a cellular wireless system, users located at cell edges often suffer significant out-of-cell interference. Assuming each
base station is equipped with multiple antennas, we can model this scenario as a multiple-input single-output (MISO)
interference channel. In this paper we consider a coordinated beamforming approach whereby multiple base stations
jointly optimize their downlink beamforming vectors in order to simultaneously improve the data rates of a given group
of cell edge users. Assuming perfect channel knowledge, we formulate this problem as the maximization of a system
utility (which balances user fairness and average user rates), subject to individual power constraints at each base
station. We show that, for the single carrier case and when the number of antennas at each base station is at least two,
the optimal coordinated beamforming problem is NP-hard for both the harmonic mean utility and the proportional
fairness utility. For general utilities, we propose a cyclic coordinate descent algorithm, which enables each transmitter
to update its beamformer locally with limited information exchange, and establish its global convergence to a stationary
point. We illustrate its effectiveness in computer simulations by using the space matched beamformer as a benchmark.






CoordinatedBeamforming for MISO Interference
Channel: Complexity Analysis and Efficient
Algorithms

Ya-Feng Lid, Yu-Hong Dai, and Zhi-Quan Lub

Abstract—In a cellular wireless system, users located at cell channel. We consider joint optimal beamforming across multi-
edges often suffer significant out-of-cell interference. Assuming ple base stations to simultaneously improve the data rates of a
each base station is equipped with multiple antennas, we can giyen group of cell edge users. Assuming that the channel state

model this scenario as a multiple-input single-output (MISO) : . . .
interference channel. In this paper we consider a coordinated information (CSl) is known, we formulate this problem as the

beamforming approach Whereby mu|t|p|e base stations J0|nt|y maximization Of a SyStem Ut|l|ty (Wh|Ch ba|anceS user fall’neSS
optimize their downlink beamforming vectors in order to simul- and average user rates), subject to individual power constraints
taneously improve the data rates of a given group of cell edge at each base station. We show that, for the single carrier case
users. Assuming perfect channel knowledge, we formulate this 54 \hen the number of antennas at each base station is at least
problem as the maximization of a system utility (which balances . . . .

user fairness and average user rates), subject to individual power two, the optimal coordmgted beaqurmlng problem 'S,NP'
constraints at each base station. We show that, for the single hard for both the harmonic mean utility and the proportional
carrier case and when the number of antennas at each base fairness utility. This NP-hardness result is in contrast to the
station is at least two, the optimal coordinated beamforming single antenna case for which the same optimization problem
problem is NP-hard for both the harmonic mean utility and the g conyex for both the harmonic mean and proportional fairness

proportional fairness utility. For general utilities, we propose a . . . . . .
cyclic coordinate descent algorithm, which enables each trans- utility functions [1]. For the min-rate utility, this problem is

mitter to update its beamformer locally with limited information ~ kKnown to be also solvable in polynomial time [1], [2].
exchange, and establish its global convergence to a stationary In addition to the complexity analysis, we propose a prac-

point. We illustrate its effectiveness in computer simulations by tjcal iterative cyclic coordinate descent algorithm for the
using the space matched beamformer as a benchmark. multi-cell coordinated beamforming problem by exploiting
the separability of power constraints. We prove the global
Index Terms—MISO interference channel, coordinated beam- convergence of this cyclic coordinate descent algorithm (to
forming, complexity, cyclic coordinate descent algorithm, global 5 stationary point). Numerical experiments are also presented
convergence. to illustrate the effectiveness of the proposed algorithm.

I. INTRODUCTION A. Related Work

In a conventional wireless cellular system, base stationsDownlink beamforming has been studied extensively in the
from different cells communicate with their respective remotsingle cell setup [3], [4]. For the multi-cell interference chan-
terminals independently. Signal processing is performed on ial, the reference [5] considered coordinated beamforming for
intra-cell basis, while the out-of-cell interference is treated alse minimization of total weighted transmitted power across
background noise. This architecture often causes undesirable base stations subject to individual signal-to-interference-
service outages to users situated near cell edges where the pluis-noise-ratio (SINR) constraints at the remote users. It turns
of-cell interference can be severe. Since the conventional intcaxt this problem can be transformed into a convex second
cell signal processing can not effectively mitigate the impaotder conic programming (SOCP) and efficiently solved. How-
of inter-cell interference, we are led to consider coordinateer, the maximization of weighted sum rates for a multi-cell
base station beamforming across multiple cells in order tsterference channel under individual power constraints is NP-
improve the services to edge users. In this paper, we focushard even for the single antenna and the single carrier case [1].
the downlink scenario where the base stations are equippedact, more is known about the single antenna interference
with multiple antennas and model it as a MISO interferenaghannel case. For instance, if the system utility is changed into

either the geometric mean rates (i.e., proportional fairness),
S - Ya-Flgng lc-iiut_and nghﬂongGDai tare sgppolréesg 1bgoéhe Ndatti}?neil: ANSatgr@he harmonic mean rates, or the min-rate, the corresponding

1en n on n rant number n I H F H H
kj‘é;y‘\jve_sf_’g& "‘éh?_Qﬁan Lo o :upp:ne deby the Army aReseaerch Oﬁiqﬁi"fﬂ|ty maximization problem (for the single tone case) can
Grant number W911NF-09-1-0279, and by the National Science Foundatibie converted to a convex optimization problem and solved
Grant number CMMI-0726336. efficiently to global optimality [1], [6]. However, when the

T_State Key Lab. Qf Scientific and Engineering Computing, Beijing, 10019(])““.1.][)er of tones is more than two, then all of the aforemen-
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channel),analyze the complexity of the corresponding utilithbase stationk, while s, is a complex scalar denoting the
maximization problems, and propose a practical algorithm ioformation signal for usek with E|s;|? = 1. The transmitter

solve them. vector of thej-th base station is;s;. Then the signal received
In addition to the aforementioned utility based formulationdy userk can be described as

various base station cooperation techniques have been pro- K

posed to mitigate inter-cell interferences, including multi-point Y = Zh;k (v;s;) + 2k, 1<k <K, (1)

coordinated transmission, or network multi-input multi-output =

(MIMO) transmission [7-16]. For example, the distributed . i e qditive white Gaussian noise (AWGN) with
or decentralized approaches are proposed for coordinale 5 . . L
transmitter beamforming vectors in MISO interference chann& T'ance"k/Q per real dimension. Treating interference as
in [7], [10], [13], [14], [16]. [17], some of which are based10/S€: We can write the SINR of each user as
on dual uplink channels. In particular, a distributed pricing |h,T€,€v,§|2
algorithm for power control and beamformer design in the o2+, |hT. V,|2'
MISO interference networks is proposed in [17]. At each F a7k gk
iteration, transmitters try to maximize their utility minus theAdopting an utility, we can formulate the optimal coordinated
total interference cost, i.e., the summation of the interfereng@wnlink beamforming problem as
price times the received interference, and the interference price  max H(ry,ry, ..., r)
indicates the marginal decrease in the corresponding user’s T )
utility due to a marginal increase in interference associated st r—=log 1+ by, Vil 3)
with the particular receiver. ol + Z#k |h;kvj|2 ’
The references [11], [12] show that coordination enables 9
the cellular network to enjoy a greater spectral efficiency. IVell® < P, 1 <k < K,
Most of these cooperative techniques require each base statidiere P, denotes the power budget of base statipand H (-)
to have not only full/partial CSI but also the knowledge ofienotes the system utility which may be any of the following
actual independent data streams to all remote terminals. With 1 K
the complete sharing of data streams and CSI, the multi-cells Weighted sum-rate utility:H; = Ez wiTE, With
scenario is effectively reduced to a single cell interference . k=1
management problem with either total [18] or per-group-of- weightw;, > 0.
antenna power constraints [19], [20]. Among the major draw-
backs of these techniques (in comparison to the utility based (ﬁ )UK
Tk ~
k=1

SINR;, = 2

approaches) are their stringent requirement on base station co- Proportional fairness utility:H, =

ordination, the large demand on the communication bandwidth X

of backhaul links, as well as the heavy computational load 1 Zlog -

associated with the increasing number of cells [21], [22]. The K P

references [8], [15], [23], [24] provided characterizations of

the achievable rate region and proved the existence of a unique ; T -1

Nash equilibrium which is inefficient in the sense that the Harmonicmean utility: s = K/< "k > '

achievable rates are bounded by a constant, regardless of the Min-rate utility: H; = min ry.

available transmit power. See [23], [25] for the recent results IsksK

of the MISO channel. i ) i
Notation: The notation for this paper is as follows: LowelACCordlng to [23], [24], problem (3) can be written in a more

case boldface is used for column vectars” and(-)! denote general form

%L

transpose and Hermitian transpode., y) denotes a two- max H(ri,r2,....,TK)

dimensional row vectot| - | denotes the Euclidean norm. As- ;

suming f(x) is a multi-variable functiony f(x) and V? f(x) st 7y, =log (1 + by, Vihyy ) ’ @)
denote its gradient and Hessian, respectively. ' D D h}ijhjk

Trace{Vk) <P, Vip. =0, 1<k<K,

whereV,, is the transmit covariance matrix at transmitker
Consider a cellular system in which there aké base The results in [23], [24] state that problem (4) has a rank-one
stations each equipped with transmit antennas. Th& base optimal solution for eactV,. This implies that problem (3)
stations wish to transmit respectively #& mobile receivers and problem (4) are equivalent. We focus on formulation (3)
each having only a single antenna. Each base station can diredhis paper.
a beam to its intended receiver in such a way that the resultingrhe above beamforming problem (3) can be nonconvex
interference to the other mobile units is small. Consider tte general due to the nonlinear equality constraints. Given
single carrier case, and lét;;, € C denote L-dimensional nonnegative weightgw;,ws, ..., w), the optimal tuple of
complex channel vector between base stagicend receiver rates (r1,7s,...,rx) of (3) should lie on the boundary of
k. Let v, € CF denote the beamforming vector used byhe achievable rate region. See [8], [9], [15], [23], [24] for

Il. PROBLEM FORMULATION



various effort to characterize the achievable rate region of thesuming the availability of a feasible solution that meets
interference channel. the threshold requirement. More formally, we say a nondeter-
In practice, the choice of utilities depends on a suitable comministic algorithm solves a decision version of optimization
promise between system performance (total rates achievalpg)blem if we can verify each “true” instance of the problem
and user fairness. The sum-rate utilify; focuses entirely using a sequence of nondeterministic steps (i.e., involving
on system performance, while the min-rate utiltf; places random guesses). If the number of nondeterministic steps is
the highest emphasis on user fairness. The other two choipetynomial, then the algorithm is said to have a nondetermin-
H, and H3 represent an appropriate tradeoff between the tvigtic polynomial running time. For example, for any symmetric
extremes. matrix Q € R™*™ and a threshold valug, consider the prob-
lem of deciding if there exists a binary vectare {—1,1}"
I1l. COMPLEXITY ANALYSIS such thatx” Qx < L. A nondeterministic algorithm to solve

In this section, we investigate the complexity status of thteIS problem is t0 guess a binary vecterand then check

i ; ) .
optimal coordinated downlink beamforming problem (3) unddr X QX < L indeed holds. Such a binary vectar exists

various choices of system utilities. We provide a comple ar all “true _mstances Of. the problem, and the verification
ni’%ocess requires polynomially many steps although some steps

analysis on when the problem is NP-hard and also ident . .
subclasses of the problem that are solvable in polynomial ti ay involve a randpm guess (Of a componler)txlgxf In this .
case, the problem is solvable in nondeterministic polynomial
. . . time. The class NP contains precisely those decision version
A. Computational complexity theory: a brief background  of gptimization problems that are solvable in nondeterministic
Generically, an optimization problem can be described Ipolynomial time. Clearly, P is contained in NP. It is widely
the minimization of an objective function over a feasibleonjectured that B¢ NP, or equivalently, there are problems in
region. A decision version of the minimization problem NP which are not solvable in (deterministic) polynomial time.
to decide if the feasible region contains a vector at which A subset of problems in NP are called NP-complete. NP-
the objective function value is below a given threshold. Theomplete problems are those in NP which are most difficult
answer to the decision problem is binary, true or false, amal solve, in the sense that if any one of them is in P, so is
there is no need to identify what the solution is. The decisia@very other problem in NP. There are many well known NP-
version is typically easier to solve than the original optimizazomplete problems such as the traveling salesman problem,
tion problem which requires the determination of an (globallyhe 3-colorability problem, and so on. The latter problem is
optimal solution. The size of an optimization problem instande decide if the nodes of a given graph can be colored in
is defined as the minimum length of a binary string required three colors so that each adjacent pair of nodes are colored
describe the objective function and the feasible region. We sdiferently. The 3-colorability problem is clearly in NP since
an algorithm solves the decision version of an optimizatiome can easily check if a guessed coloring scheme meets the
problem if for each instance of the problem, the algorithmequirement. There is no known polynomial time algorithm
correctly gives “true” or “false” answer. We can define théo solve the 3-colorability problem. In fact, if this problem is
running time of an algorithm as the maximum number of basgolvable in polynomial time (i.e., in P), then every problem in
computational steps (e.g., nhumber of arithmetic operationsp is solvable in polynomial time, or equivalently P=NP. A
required to solve the decision version of an optimizatioproblem?P is said to be NP-hard if it is at least as hard as those
problem of a given size. Typically, the algorithm’s runnindNP-complete problems, which means that the polynomial time
time is a function of the problem size. solvability of P would imply every NP-complete problem is
In the computational complexity theory [26], [30], there aren P. A NP-hard problem may not be in NP. For example, the
two important classes of optimization problems, P and NP. Theary quadratic minimization problemin,c¢_; 1y~ xTQx
class P contains optimization problems which are solvable (g8rNP-hard, since it is not known to be in NP, and is at least as
decidable) by an algorithm whose running time grows at mdsard as the NP-complete problem of deciding if there exists
as a polynomial function of the input size. It turns out that tha binary vectorx such thatx” Qx < L, where the threshold
class P is rather robust to the actual definition of input sizealue L is given. A problem is called strongly NP-hard if
For example, P is invariant if we alternatively define the input cannot be solved by a pseudo polynomial time algorithm
size of an optimization problem as the sum of the probleomless P =NP.
dimension, the number of constraints and the binary lengthTo prove a problemP is NP-complete, we need to show
of the input data and threshold value. We say an algorithtwo things. First, we verify the problem is in NP. This step is
is a pseudo polynomial time algorithm if its running timeusually easy. Second, we need to shds at least as difficult
is a polynomial when we bound the size of numbers in thes a known NP-complete problem. This can be accomplished
input by a constant. For example, many dynamic programmibg a standard technique called polynomial time transformation.
algorithms (e.g., Viterbi algorithm) are pseudo polynomidh a polynomial time transformation, we pick a known NP-
time since their state space are typically exponential if tttwmplete problem and show that it is equivalent to a special
numbers in the input are not bounded. case ofP. More precisely, we take an arbitrary instance of
The class NP, which stands flondeterministic Polynomial a known NP-complete problem, construct a special instance
time, consists of decision version of optimization problem@vith polynomial size) ofP, and then establish the equivalence
whose “true” instances can be verified in polynomial timegf the two instances. To show a problem is NP-hard, we simply



ignorestep 1, as there is no need to shBwis in NP. To show it is the True or the False value). Otherwise it is said to be
P is strongly NP-hard, we need to additionally ensure theatisfied in theNAE (Not-All-Equal) sense.

special instance oP we construct involves only numbers ofNotice that a disjunctive clause must be satisfied if it is to have
constant size, i.e., numbers whose combined bit length dake NAE property. We now define sondecision problems
not increase with the problem dimension or the number ofer Boolean variables.

constraints. Definition 3.2: MAX-UNANIMITY problem: given a pos-
itive integer M and m disjunctive clauses defined over
B. Maximization of the Weighted Sum-Rate Utility Boolean variables, we ask whether there exists a truth assign-

1 E ment such that the number ehanimoudisjunctive clauses is
Consider the system utilityf; = ?Z wgry. In the single  at least)/. When the number of literals in each clause is two,
we denote the corresponding problemNaX-2UNANIMITY
problem.When each clause contains three literals, the problem
of determining whether there exists a truth assignment under

2 2 _ 2 2 i
lgléﬂ‘N/gi?r‘é [i]n S\Za’“n ng{] ”tk;];k\'/‘véi Pr;;; b‘l,frg]a(l? )elsug?o;:l]?j which at leastM clauses are satisfied in the NAE sense is
9 qual, called theNAE-SAT problem

h fi I ial ti fi ion fi .
the proof is based on a polynomial time transformation from The NAE-SAT problem is known to be NP-complete [30].

the maximum independent set problem (which is known
be NP-complete). Thus, the general caselof 1 is also t8ur next lemma says that the MAX-2UNANIMITY problem
also NP-complete.

i . |
NP-hard. For various special MISO channels, the sum-rate ) :
maximization problem can still be solved in polynomial time, LerIana 3.1The MAX-2ZUNANIMITY problem is NP-
see [25], [27-29]. compiete. o ,
Proof: We construct a polynomial time transformation
from the NAE-SAT problem. It can be checked that the MAX-

C. Maximization of the Harmonic Mean Utility e , o ]
2UNANIMITY problem is in the class NP. Given a disjunctive

We now study the complexity status of the optimal COOFjause with three literals; = z vV y V z, let us construct the

dinated downlink beamforming problem (3) defined by th1%Ilowing six clauses, each involving only two literals:
harmonic mean rate utility. '

Theorem 3.1 (Harmonic Mean Utility)For the harmonic R(¢): VY, xVZ, yVZE, yVz, 2VZ z2Vy. (6)
K

k=1
antenna casel(= 1), the original system optimization prob-
lem (3) becomes the following (5), wherg = ||v.||%, ajr =

mean utility Hs = K/ | Y r;' |, the optimal coordinated |t can be checked thak(c) has the following properties:

k=1 . . .
downlink beamforming problem can be transformed into a 1) The number of unanimous clauses (i.e., all literals hav-

convex optimization problem whef = 1, but is NP-hard ing the same value) itk(c) is at most four.
whenl > 2. 2) The clause: is satisfied in the NAE sense if and only
When there is only one transmit antenna & 1), the if the number ofunanimousclauses inf(c) is four.

reference [1] shows that the harmonic mean rate maximizatibiow given any instance) of NAE-SAT problem, we con-
can be transformed into an equivalent convex problem. W§uct a corresponding instané¢) of MAX-2UNANIMITY
thus focus on the cask > 2. Notice that the harmonic meanproblem as follows: for each clause= o v 3V v of ¢, we
utility maximization problem is a continuous optimizatioradd to R(¢) the six clauses in (6), withe, y, =z replaced
problem. To show its NP-hardness, we need to transfommith the literalsa, 3,  respectively. In this way, itp has

a known NP-hard discrete problem to the harmonic meam clauses, therR(¢) will have 6m clauses. LetM = 4m.
maximization problem. To facilitate this transformation, it iSThen properties 1 and 2 imply that all clauses g¢nare
necessary to induce certain discrete structure to the optiméhultaneously satisfiable in the NAE sense if and only if at
solutions to the harmonic mean maximization problem. ThigastM = 4m clauses inR(¢) can be madananimous. In

is accomplished by using the concavity of the harmonfearticular, suppose thatm clauses inR(¢) are unanimous
mean utility with respect to each beamforming vectqr In under a given truth assignment. Since, by propédrtyeach
particular, Lemma 3.2 (proved in Appendix |) shows that wgroup R(c) of six clauses can have at most four unanimous
can constrain the optimal beamforming vectors to be takefauses, it follows that exactly four clauses must be unanimous
from two orthogonal vectorh,, or hy,. in each group. By property 2, this further implies that each

The NP-hardness proof of Theorem 3.1 is based onckuse in¢ is satisfied in NAE sense. Conversely, any truth

transformation from a variant of the 3-SAT [30] problemassignment that satisfies a clause the NAE sense will give
To describe this variant, we need to define the UNANIMITYise to four unanimous clauses. Thus, if allclauses iny are
property and the NAE (stands for “not-all-equal”) property o$atisfied in the NAE sense, then there will 4@ unanimous

a disjunctive clause clauses inR(¢). Finally, this transformation is in polynomial
Definition 3.1: For a given truth assignment to a set ofime. [ ]
Boolean variables, a disjunctive clause is said tdUdMANI- An immediate corollary of Lemma 3.1 is that the MAX-

MOUSIf all literals in the clause have the same value (wheth&NANIMITY problem is NP-complete. However, if we ask
. _ _ _ _ _whetherall of the m clauses (i.e.,M = m) can be made
Recall that for a given set of Boolean variables, a literal is defined as . h h di MAX-UNANIMITY b
either a Boolean variable o its negation, while a disjunctive clause refers4f@nimous, then the corresponding - prob-

a logical expression consisting of the logical “OR” of literals. lem, simply called UNANIMITY problem, can be solved in



K
max Y wjyry, subjecttory =log |1+ Tk ,0<z, <P, 1<k<K, (5)
st Vi + Zj;ék Qi

polynomialtime (using a tree search technique). Also, noticghannel vectors ark = (v/N,0)” and their noise powers are
that a disjunctive clause ignanimousunder a given truth 1. Let vy;,7 = 1,2,...,n, denote the transmit beamforming
assignment if and only if is not satisfied irNAE sense. This vector of the “variable user4i. For example, the clause
implies that MIN-3UNANIMITY problem is NP-complete. ¢; = x5 V Z3 corresponds tg = 1 and is associated with two
Since these results are not needed in the subsequent anal{sliayse users” which are denoted By + 1, 4n + 2. Since

we state them without proof. m(1) = 2 and7(1) = -3, the two usersin + 1 and4n + 2
Proposition 3.1: The following is true: experience interferences from “variable usef$t(1)] = 8
1) MAX-UNANIMITY problem is NP-complete. and 4|r(1)] = 12. The corresponding interference terms for

2) MIN-3UNANIMITY problem is NP-complete. these two “clause usersi+1, 4n+2 are[hjvs|*+ [hjvia|”

3) UNANIMITY problem is solvable in polynomial time. and|h}vs|® + |hivi|?, respectively.

We are now ready to prove Theorem 3.1. Proof: Let
the utility in (3) be given by the harmonic mean functiéfy. The correspondence between MAX-2UNANIMITY prob-
Consider an instance of MAX-2UNANIMITY problem with lem and the optimal coordinated downlink beamforming prob-
clausescy, ¢y, ..., ¢,,, defined over the variables,, zs, ..., z,, lem (7)is listed in Table I. Notice that,,,; can be obtained
and an integerM. Let h, = (1,0)T7 h, = (071)T and from clausec; according to Table | andy,2;—1 can be
h = (VN,0)T, where N is a large positive number (to beobtained fromry,»; by swappingh, with hy.
specified later). We write each clause= o;V 3;, with o, §;

A a . TABLE |
taken from{zy, o, ..., pn, 1, T2, ..., Tn}. Let us define two

VARIABLE CORRESPONDENCE

mappings
m, 7:{1,2,....,m} — {£1,4+2,...,£n} MAX-2UNANIMITY Problem (7)
variablex; beamforming vectowxy;
such that C|aUSeC]‘ I'atEST4n+2j al’]dT4n+2j,1
L L literal z; interference termh,v4;|2
7(j) = b !f Qaj = Ti andr(j) = b !f Bj = Li, literal ; interference ternhv.; |2
—i, if aj =7, —i, if 8 =a,.

For instance, ity = 3V Z5, then we havey = 3, 84 = Ts,
with w(4) = 3 and7(4) = —5. Fori = £1,42, ..., 4n, we
define

We first fix some easy variables of (7) to simplify the
problem. Since each of the beamforming vecterg,;.;,
h,, ifi>0, V4n+2j,1,j = 1,2,....m, and Vgt = 1,2,...n, 1 =
h; :{ hb’ if i <0 1,2,3, appears exactly once in the objective function, it
’ ' follows that, by optimality, these beamforming vectors must
Given an instance of MAX-2UNANIMITY problem, we con- be matched to the corresponding channel vectors. That is,
struct the .foIIowing (7) as an i.nstgnce. of (3) (the inverseznwj = VZn+2j_1 = (1,0)T, and vy, | = Vi, =
of harmonic mean utility minimization is equivalent to the‘,ZF3 = (1,0)". Substituting these optimal beamforming
harmonic mean rate utility maximization) with a total olectors into (7) yields (8). It only remains to determine the
K = 4n + 2m users. Herein, each Boolean variablecorre- optimal beamforming vectors;;, i = 1,2,...,n. For this

sponds to four users, including usgr(called “variable user”) purpose, we need the following key lemma whose proof is
and userdi — 1,4¢ — 2 and4: — 3 (called “auxiliary variable relegated to Appendix I.

users”); while each clause; corresponds to a pair of users, Lemma 3.2:If N > 2(e*™ — 1), then the optimal beam-
i.e., userdn +2; and 4n +2j — 1 (called “clause users”). forming vectors{v;,} for the optimization problem (8) must
In our construction (7), each (variable, auxiliary variable dfe eitherh, = (1,0)" or hy = (0, 1)7.

clause) usert is associated with a transmitter beamforming |t follows from Lemma 3.2 that the optimal beamforming

vectorvy, k =1,2,...,4n + 2m. vectorv;; of (8) is eitherh, or hy,. In either case, the sum of
In (7), the n “variable users” communicate interferencenyerse rates

free. Their channel vectors ar£/0.9,1/0.9)” and their

noise power arel. The 3n “auxiliary variable users” 1 1 1 1 1 1
4i —1,4i — 2,4i — 3,4 = 1,2, ...,n, do suffer from crosstalk — + + + = + +
interference from the ‘variable userii. That is, the % T4-1 42 T3 169g1.9 log 101~ log 2
interference channel vectors from the “variable usér"are N

(1,1)T,(1,0)7, (0,1)T, respectively; the direct link channelis a constantC. Thus, regardless of whether;, = h, or
vectors are(1,0)7,(10,0)T and (10,0)7; the self noise h,, the first sum in the objective function of (8) remains
power at each “auxiliary variable user” is zero. For thanchanged and equatsC. Thus, we only need to consider
“clause usersin + 25 and4n + 2j — 1, j = 1,2, ...,m, their the second sum in the objective function of (8). Notice that




n m
. 1 1 1 1
min ( + + + > + E < )
i—1 T44 T4i—1 T4i—2 T4i— Tan+2j 7"4n+2j71

7j=1
st 1y =log (1 +1(+/0.9, \/0.9)v4i|2) :

[(1,0)vyi—1|?
r4;_1 = log (1 + 7|(1’ Dva? ,
10,0 Vygi—
T4i_9 = log (1 + |(|( 0))‘;1”;' > )
=1 1 |(1070)V4¢—3|2 )
Tr4;—3 = log + 7“07 1)V4i|2
Tan+2; = log | 1+ |hTV4”+23‘2 )
n+2j —
1+ bl Va2 + 1Bl ) vap 2
‘hTV4n+2j71|
T4n+2j71 = 10g ]. +
L+ BT vamel? + 10T var gy 2

[vel?’<1,1<i<n, 1<j<m, 1<k<d4n+2m.

1 . < 1 )
min — + + +
Z <T4z T4;—1 T4;—2 r47, > Z T4n+2j r4n+2j71

j=1
st ry =log (1+0.9|(1,1)val]?),
rai—1 =log (1+1/|(1,D)va[*),
r4i—2 = log (14 100/|(1,0)v4|?), 8)
rai—3 = log (1 + 100/|(0, 1)v4,|2)
Tant2j = log (1 +N/ (1 + h] ) Va1 + 1] () vareG | ))

rinsayr =log (14 /(1 + |h wVamnl + 1L varnl?) ).
||V41H <1, 1<:<n, 1 <5< m.

1 1
N log(l—li—N/?))—i—log(l—li-N/l)’

Tan+25  Tadnt25-1 if ¢; is not unanimous.
10g(1—1—N/2)Jrlog(l—i—N/2)7 K

if ¢; is unanimous

the value of each term in the second sum only depends onFinally, given an instance of the MAX-2UNANIMITY
whether clause:; is unanimous (see the second equation roblem, we can construct the harmonic mean rate maxi-

the next page). Since mization problem (7) in polynomial time. Since the MAX-
1 1 9 2UNANIMITY problem is NP-complete (Lemma 3.1), it fol-
+ < lows that the optimal coordinated beamforming problem (3)
log (1+N/3) ~ log(1+N) ~log(1+N/2) with harmonic mean utility is NP-hard. |

from Claim 1 in Appendix I, it follows that second sum

of (8) will be smaller if more clauses are satisfied unanf* few remarks are in order. First, it follows from the proof
mously. Therefore, the minimum of (8) is only related to thef Theorem 3.1 that even if the optimal transmit power levels
maximum number of unanimous clauses in the given MAXare known (i.e.||v¢|[* < P is replaced with|[vs|* = Py),
2UNANIMITY problem. Specifically, the minimum of (8) is the problem of finding the optimal beamforming directions of

no more than harmonic mean rate maximization problem is still NP-hard.
Second, we have set the noise powers of uders 1,47 —
M M 2(m — M ' . S
nC + (m ) 9) 2,4i—3,i=1,2,...,n,to zero in (7). These settings simplify

+
log(1+N/3) ~ log(1+N) = log(1+N/2) the proof and do not reduce any generality. We could have
if and only if there exists an appropriate truth assignment suabed small noise power values in the proof (even though
that at leastM clauses are made unanimous for the givesome extra argument is needed), since there is a positive
MAX-2UNANIMITY problem. Thus, we have transformed thegap between the global optimal value and the local optimal
problem of MAX-2UNANIMITY problem to the problem of values of (7). Finally , our proof actually implies that there
checking if problem (7) will have an optimal value below thés a positive probability (measure) that a randomly generated
above threshold (9). MISO coordinated beamforming problem under the harmonic



meanutility is NP-hard to solve. In particular, by continuity, all(Lemma 3.1), it follows that the optimal coordinated downlink
slightly perturbed versions of the constructed instance (7) (i.eeamforming problem with utilityd, is also NP-hard. m
channel vectors, noise/transmit powers are slightly changed)

will be equivalent to the MAX-2UNANIMITY problem. This £ paximization of Min-Rate Utility

is because there is a positive (and constant) jump in the globa . . .
optimal value of the constructed example when the optim%l_l‘et the system utility function be given bt = .H4.'In
value of the corresponding MAX-2UNANIMITY problemt is case, the problem can be_ _solved |n_polynom|al time for
increases by one. When channel conditions change inghﬁ{P'trafyL and K [1], [2]. Specifically, letting

this one-to-one correspondence between the optimal values of r= min {r},

the two problems and the property of the discrete jump in the IsksK

optimal value of the constructed MISO problem remain validhe min-rate utility maximization problem becomes

o ) _ - max r
D. Maximization of Proportional Fairness Ultility

], vi|?
Like the harmonic mean utility, we have the following st r<log <1+ T o) (12)
hardness result. i+ 2 jan V5|

Theorem 3.2 (Proportional Falrnessl/LIJ(tnlty)For the pro- IVil2 < P, 1<k < K.

K
portional fairness utilityl, = Hrk , the optimal co-  Given ar > 0, we can efficiently check if there exists
. . \k=1 v,k = 1,2,..., K, such that the constraints in (12) are
ordinated downlink beamforming problem can be tr?‘”s‘corm%‘iﬂsfied. This feasibility problem is a second order cone
into a convex optimization problem whefn = 1, but is NP- yr5gramming, which can be solved efficiently using interior-
hard whenL > 2. point methods. The following theorem is a generalization of

Proof: The first part of Theorem 3.2 is proved in [1]. FORpe result of [2], which deals with the single-cell case.
the second part, the argument is similar to that of Theorem 3.11heorem 3.3 (Min-Rate Utility)For the min-rate utility

We only give a proof outline below. . _ the optimal coordinated downlink beamforming problem can
First, we have the following lemma whose proof is providegg solved in polynomial time with arbitrar and L.
in Appendix II. Proof: We give the following bisection algorithm for

Lemma 3.3:The function f(z) = loglog <1 +

! ) solving (12).
X
is strictly convex inz > 0 for any o.

o2

Second, given any MAX-2UNANIMITY problem, an in- A Polynomial Time Algorithm for Min-Rate
stance (10) of the optimal coordinated downlink beamforming Utility Maximization
problem (3) with utility log H> (equivalent to proportional | Step 1. Initialization: Chooser, and r, such that the
fairness utility maximization) andn + 2m users is con- optimal 7, lies in [r¢,r,] and a tolerance.

structed as follows. Notice that each global optimal solutign Step 2. If r,, —r; < ¢, stop, else go t&tep 3.
of (10) must havevs;, , = v3;, , = (1,0)7,i = 1,2,...,n, Step 3. Let rpq = (re+7ry)/2 and solve an SOCPR

andvs,, o = V3,01 = (1,007, j =1,2,...,m. Moreover, problem to check the feasibility problem of (12)
we consider the following parametric optimization problem with r = ryiq. If feasible, letry = 7,4, else set
(similar to (19) in the harmonic mean case): Ty = Tmia @nd go toStep 2.
max logrs + logry + logry According to standard analysis of path-following interior-
point methodsStep 3 can be finished i (K3°L3-5) time.
st.  r3=log (1 +(+/0.1,7/0.1 v3|2) , With regards to initial choices far, andr,,, we can letv;, =
)) a1 hixv/Pe/|hik|| (space matched beamformer) and

ro =log (14 1/(0® + |(1,0)vs]
r1 = log (1+1/(c® + (0, 1)vs|*)) |hf, ¥
HVSH =t, Ty = Hl@IllOg 1+ 2 b T < 2]
. . k o+ 2z 0V
whereos > 0 is a constant and is a parameter. The global
maxima of (11) should bet,0)7 and (0,t)T when o is , < |h£kvk2>
ry, = minlog [ 1 + —%5— | .

)
b

small. Furthermore, the optimum value of (11) is an increasing o?
function with respect ta € [0, 1]. Using an argument similar '

to that of the harmonic mean case for (8), each globally takes log, ((r, —7¢)/¢) iterations to reach tolerance
optimal beamforming solutiorv;, of (10) should be either €. Thus, a total 0fO(K?°L*? log, (., —7¢) /€)) arithmetic
h, or h, when N > 3(e%™ — 1). When restricted to solutions operations are needed in the worst case. Since

of the form v}, = h, or h;, the maximum of (10) is only . 2, 2 2, 2
linearly relate?a to the maximum number of unanimous clauses ' ¢ < log(1+ Pullbwel*/ow) < Pellbwnll™/ o,
in the given MAX-2UNANIMITY problem. Thus, maximizing the second equation in the next page holds true, which is a
the number of unanimous clauses is the same as solvpynomial in the length of input data (all the channel vectors
(10). Since MAX-2UNANIMITY problem is NP-complete h;;, noise powers? and power upper bouné). Thus, the



n

max Z (IOg r3; + log r3i—1 + 10g ’I"31'_2) —+ Z (lOg T3n+25 + log T3n+2j—1)
i=1 =1

st 1y =log (1 +(v01, \/0.1)v;3i|2) ,

1,0)vs_1]?
7”31'71:10g <1+|( : )V3 1| >,

(L0
1,0)v3i—2
o =log 14 D ¥siz2l )
T3i—2 og(l+ 10, v |® (20)
BV ga
Tanyaj = log <1+ T | vg2+2a\T 2>’
L+ by Varyl? + by vaz )l

ht .2
T3n42j—1 = 10g <1 + - ‘ V3n-2i-2] 1|'r 2) 7
L+ hl o varyl® +hl ) vzl
[vel?’<1,1<i<n, 1<j<m, 1<k<3n+2m.

KP5 L3 log, (r — 1) /€) < KO L3 (| logy Pu| + 2| log, [[hexl| + 21| logy o] + [logs )

abore algorithm has a polynomial time worst case complexity. Interestingly, the pricing algorithm introduced in [17] can be
B viewed as a partially linearized version of our cyclic coordinate

Remark: The algorithm described herein easily extendlescent algorithm. In particular, our proposed algorithm tries
to the weighted min-rate maximization problems. In [28}o allocate resources of thieth transmitter by maximizing
the weighted min-rate problem is related to the weightae summation of all users’ utility functions subject to its
sum MSE minimization problem and the weighted sum-rafgower constraint (||yl|> < Py); while the pricing algorithm
maximization problems through the nonnegative matrix theotgts transmitterk maximize its own utility function plus the

Table Il summarizes the complexity status of the optimaummation of the first order approximation of all other users’
coordinated downlink beamforming problem (3) for differentitility functions at the current point;; = \hzjvkﬁ where
choices of utilities. 1I;,; denotes the interference at thi¢h receiver from thes-th

transmitter.
IV. ACycLIC DESCENTALGORITHM

In this section, we consider numerical algorithms for the ) ) )
coordinated beamforming problem (3) with harmonic med AN Inexact Cyclic Coordinate Descent Algorithm

utility Hs: The cyclic coordinate descent algorithm is also known as the
min  p(vi,va, ..., Vi) nonlinear Gauss-Seidel iteration [32]. There are several studies
(13) of this type of algorithms [32-36] with many applications
st ||[vi]? < P, 1<k<K, in engineering [37]. However, most of these studies require
where either the convexity of objective function or exact solution of
. subproblems (14), which not only is costly but also may result
1 in algorithm divergence [33]. Below we consider a general
pV1, V2, Vi) = ; e differentiable optimization problem with separable constraints
rL = lOg (1 + |h£kvk|2 ) ) min f(Xl,XQ, ...,XK) (15)
0%+, [l v 2 st. xpeXp, 1<k<K,

Since this problem is NP-hard (proved in Section ), we

are led to develop efficient algorithms to find a high qualit nd closed. We propose an easily implementable cyclic co-

approximate solution or a stationary point for (13). Due t dinate d t alaorith hich simol . fficient
variable separabilityin the constraints of (13) and our desire rainate descent aigorithm which simply requires a sufficien
ecrease in the objective of (14) at each iteration. The algo-

for distributed implementation, we propose to solve (13) b . o L
cyclicly adjusting the beamforming vectsy, while assuming thm.can be applied to solve the utility maximization problem
the beamforming vector§v; : j # k} are fixed. In other (3) with I = I, Hp and H; and have the same convergence
words, we solve a sequence of per-base station problems properties becquse the_y have smooth objective functlon_s and a
separable feasible region. But the same can not be said about
H‘}in p(Vi, Vo, ..., VK) H, since it is non-differentiable.

(14

here the feasible seX := Hle X}, is separable, bounded

s.t. Hvkll2 < P;.



TAB

LE 1l

COMPLEXITY STATUS OF THE OPTIMAL COORDINATED DOWNLINK BEAMFORMING PROBLEM

Class Uitility Weighted Sum-Ratg ProportionalFairness| HarmonicMean Min-Rate
L=1,any K NP-hard[1] Corvex [1] Corvex [1] Poly. time Algorithm [1], [2]
L >2,any K NP-hard NP-hard NP-hard Poly. time Algorithm [1], [2]

An Inexact Cyclic Coordinate Descent Algorithm

Step 1. Initialization: choosex! = [x1,x},...,x%] and a
tolerancee > 0.
Step 2. Iterationi > 1: Denote fork = 1,2, ..., K,
zfjl = (xil"'l, ...,x}ill,x?'l,xf;_kl, ...,xiK) , (16)
and letz/"' = x'.

Fork=1,2,..., K,
- Compute the gradient projection directio
for the componenk;, according to

d;fl = PXg-, [Xi _vka( )] —X};, (17)

where Py, [-] denotes the orthogonal projeq
tion to X;,.

- Determine a stepsize,"' using the back-
tracking line search technique [38].

- Updatex}™ = x} + i 'd}.

i+1
Zpq

i i+1
Let x_l+1 = zit A A
Step 3. Termination: If||xi*! — x| < ¢, then stop. Else
seti =¢+ 1 go to Step 2.

stuck at an uninteresting point:

min 2% + a3
st x1+x0 > 2.

This strongly convex function has a unique global solution at

x} = x5 = 1. However, if the initial point is(1.5,0.5), the

cyclic coordinate descent algorithm will be stuck.

Specializing the inexact cyclic coordinate descent algorithm

to the coordinated beamforming problem (13), we need to per-
n form a projected gradient descent iteration for the subproblem

(14). In this case, we have a ball constrdifit= {v | ||v]|*> <

P} and the corresponding projection is straightforward

i v, if |v|?* < P,
= v/ P .
et N VP> P (18)

As a variant, we can also use the so called Barzilai-Borwein
(BB) projection step for the subproblem (14) to replace the
standard gradient projection step. In particular, at iteratjon
the BB gradient projection directiod’; ;; is given by

When specialized to the MISO downlink beamforming
problem, the above inexact cyclic optimization procedure car}1 io1
be implemented in a distributed fashion. At the initial steﬁ",’ eres
each base station needs to know the local CSl for all chann
originating from that transmitter (either through feedback

reverse-link estimation [31]). The only information to
exchanged are the SINR termsdtreceivers. In subseque

iterations, a base station updates its beamforming vector
solving (14) inexactly using a gradient projection algorith
After that, all receivers measure individual SINR terms a
send the SINR information to the next base station. The inexd
cyclic coordinate descent algorithm enables each transmit'i'(%
to update its beamformer with only limited information ex?

change.
The next result shows that the above Inexact Cyclic C

ijB = PVk (V;s - aiBBVVkp(Vi)) - V;;;?
v s
BB T (Si—l)Tyvi—l )
= V;;e _V;;il’ yi_l = kap(vi) _VVk:p(Viil)' It

an be shown that the above BB gradient projection direction
always a descent direction. Tlelinear convergence of the

gB method has been established for strongly convex quadratic
u

b nctions in [39].

nt . . L .
f we use a single gradient projection step to inexactly solve

'ﬁ% partially linearized subproblems in the pricing algorithm
’j&?], then the resulting inexact pricing algorithm is algorith-
ically identical to the inexact cyclic coordinate descent algo-
t;m considered herein. This is because the gradient vectors
the two utility functions in the respective subproblems (i.e.,
p(v) and its partially linearized versions) are exactly the same.
This observation, coupled with Theorem 4.1, immediately
OQmplies the convergence (to a KKT solution) of the inexact

dinate Descent Algorithm converges to a KKT point of (15)ricing algorithm for MISO interference channel. The latter

The proof of this result is relegated to Appendix Ill.

is interesting since the convergence of the original pricing

Theorem 4.1:Supposef(x) is twice continuously differ- algorithm has not yet been established.

entiable and bounded below, and the feasible Xet:=

]‘[,ﬁ(=1 X, is convex, separable and compact. Then every

accumulation point of the sequende’} generated by th

V. NUMERICAL SIMULATIONS

€ To evaluate the effectiveness of the cyclic descent algorithm,

inexact cyclic coordinate descent algorithm is a stationawe have conducted numerical simulations far-eell network

point of (15).

with one user per cell as shown in Fig. 1. Each base station

The separability of constraints is necessary for the algis-equipped withl, antennas. Similar to [5], standard WiMax
rithm’s convergence. The following example (taken from [35]parameters are used in all the simulations; see Table I, where

shows that, without the separability, the algorithm can

gétis the distance in kilometers. The location of each remote
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TABLE Il
STANDARD WIMAX PARAMETERS

Model or Parameters Values
noisepower spectral density —162 dBm/Hz
pathloss model 128.1 + 37.6log;(d)

log-normalshadowing 8 dB

distancebetween neighboring base stations 2.8km

antennagain 15 dBi

5 11 : : : :
*  Base Station —H— Hamonic Mean Utility

2

4 H O  Remote User q
1 B> P> B> P>
3l ]

|

Rate [nats/sec/Hz]
o o
© ©

o
3

0.6

_5 1 05 1 1 1 1 1 1 1
-5 0 5 1 2 3 4 5 6 7 8 9 10

Iteration

Fig. 1. A wireless network with seven base stations and single user per c€lig. 2. A typical iteration process of the cyclic coordinate descent algorithm
with K =7,L =4 and P = 30 dBm.

user is chosen randomly within its cell such that it is at least
0.5km away from the corresponding base station.

Figure 2 plots the iteration process of BB projection method
for the coordinated downlink beamforming problem with
harmonic mean utility. It can be seen that most of improvements=
is achieved in the first 1-2 iterations, making the methodé 1k
attractive for practical implementations. A ‘ ‘ ‘ ; ‘ & ‘

For a two-user MISO channel, a parametrization of the > o 1> 20 0 02 S0 % 40 45 %0
achievable rate region boundary was given in [8], [24]. We
can use this parametrization to compute the global optimal_,
solution of the coordinated MISO downlink beamforming %
problem by searching along the rate region boundary. In Fig. 32
the performance of our proposed cyclic descent algorithmg 2
is compared against the global optimum for 50 randomlyg 11
generated two-user MISO channel. It can be seen that the ;
proposed algorithm either achieves, or nearly achieves, the 5 10 15 20 25 30 35 40 45 50

. . 50 Channel Realizations with K=2 and L=3
global optimality.

Figl-”e 4 shows the pgrformance a(-:hieved by the CyCIIi:(':g 3 Performance comparison of the proposed algorithm and the
coordinate descent qlgorlthm versus dlffgrent pumber of gl metrization method with — 2, P — 30 dBm.
tennas for various utility functions and with a fixed transmit
power P = 30 dBm at each base station. Each point in
Fig. 4 is obtained by averaging oved0 independent channel
realizations. Space matched beamformers are used as the
benchmark. It can be seen that the transmit rates improveCoordinated transmit beamforming is a promising approach
significantly over the benchmark solution. When the numbéor interference mitigation in a MISO interference channel. A
of users & = 7) and the transmit powerH = 30 dBm) are major design challenge is to find, for a given channel state,
fixed, the utility increases linearly with the number of antennasglobally optimal beamforming strategy under an appropriate
L, suggesting an additive system gain with increading utility criterion. In the single carrier case with a single antenna

[ —e— Upper Bound
—*— Proposed Algorithm

ats/sec/Hz]
w B o

N
T
I

50 Channel Realizations with K=2 and L=2

—©— Upper Bound
o —*— Proposed Algorithm
i R

VI. CONCLUSION
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and (0,1)” are the only global minima for the optimization
—B— - Benchmark for Min-Rate Utility ‘ ‘ problem
—+H— Min-Rate Utility
—%— Benchmark for Harmonic Mean Utility

l . N 1 N
~——%— Harmonic Mean Utility min  log™ 1 + PR + log 1+ ———

2
o* +
3| —O—  Benchmark for Proportional Fairness Utility ] Yy

Proportional Fairness Utility a/a/g st. z+y=1, x>0, y>0,
2.5/ - —B— - Benchmark for Sum-Rate Utility

—&— Sum-Rate Utility & whereN > 0.

To establish Claim 1, we first show the strict concavity of
—-1 2 -1 .
r(z) = log (1 + (0% + ) ) . Since

Rate [nats/sec/Hz]

r?(z)

(1+o02+2) (02 +2x)’

y 2r2(x) (r(m) - (1/2 +o2+ x))
3 4 5 6 7 8 r(x) = 2 2
Number of Antennas (1 + 02+ x) (0'2 =+ :Z:)

r'(x) =

it follows that
Fig. 4. Performance comparison of coordinated beamformers with space o
matched beamformers with® = 7, P = 30 dBm. () <0 <=

g(z)=log (1+1/(c*+x)) —1/(1/2+ o+ z) > 0.
per transmitter, maximizing the (weighted) sum-rate is knowrft 2 = 1/(c” + ) and considerh(z) = log(1 + 2) —
to be NP-hard. However, the same problem is polynomial tinté/ (2 + 2)- Since
solvable when the proportional fairness, harmonic mean or 52
max-min utility is used. It turns out the situation with multiple 7(0) =0 and 1'(z) = 019G 22> 0, Vz>0,
transmit antennas is rather different. For instance, when each
transmitter (e.g., a base station) is equipped with two antenniégdollows that g(z) = h(z) > 0 for all z > 0, implying
the corresponding joint beamformer design problem becontg€ strict concavity ofr(z) over the interval(0, cc). Since
NP-hard under either the proportional fairness or the harmos@tfine transformation does not change strict concavity of a
mean criterion. These complexity results suggest that nction, this implies thatiog™ (1+N/(0 + 1)) is also
should abandon effort to find globally optimal beamformersirictly concave forz > 0. Finally, since the minimum of
for a general MISO interference channel unless the max-nfirstrictly concave function over a polytope is always attained
utility is used. In the latter case the problem remains solvaté & vertex [40], we have established the claim.
in polynomial time. To establish Lemma 3.2, let us consider the following
Motivated by these complexity results, we propose a simgh&rametric optimization problem iR?
distributed inexact cyclic coordinate descent algorithm to 1 1 1 1
find a (locally optimal) beamforming strategy. Our algorithm mn —+ -+ -t
. . 4 T3 T2 T1
exploits the separable structure of the power constraints, and

is provably globally convergent to a KKT solution. This st rg=log (1+0.9/(1, )V|2)

algorithm requires only local CSI and an exchange of local rg =log (1 +1/|(1 1 Jv[? ; (19)
SINRs at each iteration. Numerical experiments with WiMax ry = log (1 + 100/\ L,0)v |2)

system parameters show that the proposed algorithm is both r1 =log (1+100/|(0,1)v[*) ,

effective and efficient, providing significant rate gain over the vl =t

space matched beamforming strategy. wherev = (v, v2)7, andt > 0 is a parameter.

Claim 2: Let f(¢t) denote the minimum value of (19). The
following properties hold:

1) f(¢) is a strictly decreasing function i, 1],
The authors wish to thank Professor Wei Yu of Univertity 2) Whent e (0.95, 1], the global minima of (19) arg, 0)”

of Toronto for his help in numerical simulations. and (0,t)7,
3) f’(t) is an increasing function if0.95, 1].

VIlI. ACKNOWLEDGMENTS

APPENDIXI Let us argue that Claim 2 is true. First, if part 2) is true,
PROOF OFLEMMA 3.2 then we can check part 3) directly by first computif@) as
The proof consists of establishing three claims. the objective value of (19) at its optimal solutiois0)”

_ _ B ) L _ (0,t)T, and then verifying thaf” (t) > 0 for ¢t € [0.95,1].
Claim 1: The functionlog™ (1 + (0% + ) ) is strictly e omit the details of computation for space reason. So we
concave inx > 0 for any o # 0. Furthermore,(1,0)” only need to argue parts 1) and 2).

1
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Whent is fixed, the KKT condition for problem (19) can By symmetry, we only need to provgv;| = 1. Let us

be written as consider the following parametric optimization problem (21)
b(vr,v2) + V(v1) = vy, in v4 with the other variables;, z‘_: 2,3,...,n, fixed, andt
d(v1,v2) + 1/)(112) = Aua, (20) asa parameter. Let(t) be t_he optimum value of (21) and let

vt = £ g1(t), g=(t) denote respectively the values of

where ¢(z,y) and ¢)(x) are given above and is the La- 1 n 1 n 1 n 1 and i( 1 . 1 )

grangian multiplier associated with the constrdjrt] = ¢ in T Te T3 T4 Tant2j  Tdn42j—1

2 _ _ =
(19). It can be seen tha{(tvt)T is always a solution to (20). \yhen evaluated at the global minima of (21). By definition,
Moreover,(t,0)T and(0,¢)T are the (only) non-differentiable f(¢t) < g¢,(t) for all t € [0,1]. We claim thatf(t) = gi(t)
points of (19). Supposév, (), v2(t))T, wherev, (t) # v2(t), for t € [0.95,1]. To see this, we consider the optimization
are other KKT solutions to (20) (if there are any). Notice thairoblem (22). Definéh v4|> = z, then|h]v,|> = 12—z, and
the global minimumf(¢) is always attained at a KKT point the objective function of (22) is only dependent snwhile
or at a non-differentiable point of (19). Thus, we must havets constraint||v,|| = ¢ can be transformed t6 < x < 2.
Using Claim 1, we see that the objective function of (22) is
ft) = {AI%?C {fa(®), f5(2), fo (1)}, strictly concave inz. As a result, the globally optimat can
only be attained at the end points of the constraint interval
[0,#2]. In other words, the global minimizer of (22) must be
either (¢, 0) or (0,¢)T. Since the global minima of (19) are
also (¢,0)T and (0,#)T whent € [0.95,1], it follows that
Fhe global minimizer of (21) is eitheft, 0) or (0,t)7, if
t € [0.95,1]. This implies thatf(¢t) = g1 (¢) in [0.95,1].

where f4(t) and fg(t) are given in the following page and
fc(t) is the objective value of (19) &t (t), v2(t))7.

Next, we claim thatf(¢) is a decreasing function in €
[0,1]. We prove this by examining the monotonicity of th
component functionsf4(t), fs(t) and fo(t). By (20), we
have

(01 (1)) — ¥ (0a(t)) Next, we prove that itV > 2(e**™ — 1), theng(1) < g(t)
A= 1(t) — a(t) <0, for t € [0,1). Due to the choice ofV, it can be checked that
wherethe last step follows from the fact that(z) is a de- ‘(1 . 0,
creasing function for: € [0, 1]. Therefore, we conclude from log*(1+ N/3) ~
the standard sensitivity analysis [38] of duality multipliers that o
fo(t) decreases as increases in0,1]. For ¢ € [0,0.75), it £(0.95) > f(1) +

can be checked that all of;(¢),i = A, B,C, are decreasing log(1 + N/2)

functions. Thus,f(t) decreases monotonically if0,0.75]. Then, we have
Fort € (0.75,0.85), the global minimizer of (19) is neither 1) For anyt € [0.95, 1],

2 .
~Z(t, )T nor (¢,0)7 or (0,t)T as we always can find a g'(t) = gi(t) +g5(t) = f'(t) + g5(t)
point at which the objective function is smaller thAn(¢) and < (1) +g3(t)
fB(t). As aresult,f(t) = fc(t) decreases ih € (0.75,0.85). < )+ 277” <0
Fort € [0.85,1], we have knowfz(t) < fa(t), so f(t) = log®(14 N/3) ~
min{/5(t), fc()}. As both of f5(t) and fc () are decreasing The second equality is due to the fatft) = g1 (¢) for
fuqctlons int € [0.85,1], we knovyf(t) decre'ases if0.85, 1].. t € 0.95,1]. The first inequality holds sincg(t) is an
This completes the proof thg{¢) is monotonically decreasing increasing function irf0.95, 1] (cf. part 3) of Claim 2),
n [0,1]. ) while the second inequality follows from

We next prove part 2) of Claim 2: namely fore [0.95, 1], )
the minima of (19) are(t,0)” and (0,#)T. We can use e — M torall

, 0, _ g5(t) < or all ¢ € [0.95,1].

vy = /t2 —v? to transform (19) into an unconstrained (1) log?(1 + N/3) | ]
univariate optimization problem, wheret < v; < t. The non-positiveness af (t) overt € [0.95, 1] implies
The global minimizer (vy,v2)?7 of (19) should satisfy g(t) > g(1), for ¢ € [0.95,1).

that v;u, > 0, else we can find(v;,v,)7 such that 2)

X For anyt € [0,0.95], we have
U1 + Uy = vy + vg, |U1] < |v1| @and |T2] < |vs|, at which ytel ]

objective would be lower. Thus, we only need to consider g(t) > aq1(t) > f(t)

the casevivy > 0. Due to the symmetry of (19), we only > £(0.95) > £(1) + 2m

consider the case < v; < v/2t/2. It can be checked that for - - log(1 4+ N/2)

any t € [0.95, 1], the objective function of (19) increases as > g1(1) +g2(t) = g(1),

vi increases irf0, v/2¢/2]. Hence,(0,4) and (t,0)" are the where the third inequality holds becaugg) is a strictly
global minima for (19) witht € [0.95, 1]. decreasing function ifo, 1] (cf. part 1) of Claim 2) and

the last inequality is due to

Claim 3: When N > 2(e™ — 1), the global minimav;, of
(8) must have unit-nornjvy, || = 1,i = 1,2,....n 2m

_am .
log(1+ N/2) = g2(t), forallte0,1]
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-18(z+y) 2

(;S(IE, ) = + s
/ log? (1 109z + y)2> (1 109z + y)Q) log? (1 1/ (x+ y)2) ((x +y)’+ 1) (z +y)
o) — 200
v log? (1 + 100/22) (100 + 22) z
oo 1 1 2
falt) = log (11 1.82) | log (14 05/82) " log (1 +200/2)"
1 1 1
fB(t)

log (1+0.92) log (1+1/2) " log (1 + 100/2)’

1 1 1 1
min ( + —+— ) Z ( )
vy T4 T3 r2 r Tan+2; 7”4n+2j—1

st ry=log (1+0.9](1,1)vy | °),

r3 =log (1+1/|(1,1)va|?)
=log (1 +100/(1,0)v4
=log (1 +100/|(0,1)vy4

HV4|I =t

ranva; = log (14 N/ (14 0L Va2 + 0L var i 12) )

Tant2j-1 = log (1 + N/(l + Il Va1 + ‘h]L—T(j)v4\T(j)\|2))7

1<j<m.

min Y- ()

=1 Tan+4-2j Tan+25-1
st vl =,
Tint2j = log (1 + N/ (1 + B Vian(y ” + B viergy) |2>)

Tant2j-1 = log (1 + N/(l + B vapel® + BT va gl ))
1<j<m.

N -

(22)

Combiningthe above two steps showst) > g(1) for all whereg(z) = (2b+2z+1)r(z) andb = o2 > 0. Lety = z+b,
€ [0,1). It follows that the minimum ofg(¢) over [0,1] is theng(x) becomesh(y) = (2y + 1) log(1 + 1/y). It suffices

attained at = 1. This establishes Claim 3. to prove thath(y) > 1 for all y > 0. Since
Finally, notice that Claim 3 implies that problem (8) is

equivalent to problem (21) with= 1, whenN > 2(e40™—1). K (y) = 2log (1 + 1) _ 2y +1)

Since the global optimal solution of (21) must be eittr)” y(y +1)

or (¢,0)7 for ¢ € [0.95, 1], it follows that the optimal solutions gnq

vi,i=1,2,.., K, for problem (8) should be eithdi, 0)” W (y) = 1 -

or (0,1)T whenN > 2(e*0™ —1). y2(y +1)2
we know R'(y) is an increasing function. Since
APPENDIXII lim, 4o k' (y) = 0, it follows thath/(y) < 0 and k() is a

PROOF OFLEMMA 3.3 decreasing function. Notice thdim, . . h(y) = 2. Thus,

Proof: Let r(z) = log (1 +1/(b+x)), then we have we haveh(y) > 2 > 1 for all y > 0. This further implies that

f(z) =logr(z), and loglog (14 1/(b+ z)) is strictly convex forz > 0. [ |
-1 r'(x)
/ _ / —
r'(z) = Grit0 i) f'(x) ) APPENDIX I1I
CONVERGENCE OF THECYCLIC COORDINATE DESCENT
and ALGORITHM

(g(z) 1)

" _
fi(z) = (b+1+2)2(b+ z)2r2(z)’ We first need to estimate the step length.
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Claim 1: Supposec; € (0,1), Vh(y")Td® < 0 and Denotingmaxycx ||V f(x)|| £ M, hence we have
2 - . - -

1;15)/( H_V h(y)“ <B, Whgreh(y) is 6-1 mult|-v_ar|able fu_nctlon 14| < [V fZ)] < M < 4o, (28)
associated withy andY” is the feasible region. Consider the g
Armijo step length rule [38] whereby; := +¢, withy € (0,1) The lower bound and upper bound gV, f(z,",)| is very
and/ > 0 being the smallest integer satisfying helpful in estimating the decrease value of the function.

N ; . ; , T We proceed by contradiction and supposés not a KKT

h(y" +7°d") < h(y") + e1r"VA(y')"d". (23) point. Thend = Px[x— Vf(X)]—% # 0 so thats = ||d|| > 0.

Then we have Let . ~
2(er — DAy g = minf | e = 3] > 0}
1>q; >min<1, : , (24) , . _
B||d?||? and supposeé™* > 1 without loss of generality. By definition,
and we have
hy’) = h(y' + a;d’) Jim [t =6, =0, fork < k.
1€lp,1—00
. 201(1—¢) (Vh(x))Td?)’ o .
> min {—C1Vh(yl)Td’, al Cé) |(|dA”(2X )'d’) Recall the definition o' (16). Since
vld* . ) ) )
Es) I ox = el —s
. < g A i
Let us argue Claim 1 holds. Suppose that the step length - HX} )le +aéi+ud1 I 0
a; = 1 is not accepted. In this case; will be the largest step < b = xall+ ld i€ 0 imr00

satisfying the sufficient decrease condition (23), implying we havelimyez, .o 21 = %. In general, the same argument

h(y' + iy tdY) > h(y') + cray ' Vh(y))Td’.  (26) shows that

By Taylor expansion, (27) in the next page holds true. Com- lim ozt =%, VEk<k.
bining (26) and (27) yields (24). Substituting (24) into the i€Zo,i—00
sufficient decrease condition (23), we immediately obtain (28y0onsequently, there holds
which establishes Claim 1. _ lim V. f(z) = V. f(X)
We now proceed with the proof of Theorem 4.1. The basic i€To,i00 LS (29)
idea is based on the contradiction principle. More exactly, if lim dﬂ = dp-.

1€Zp,i—00

there is no convergence, we can find one descent direction _ _

which can provide a sufficient descent in the objective function L€t US usef- to denote the angle betweed- and

value and then obtain a contradiction. Vi, [ (X). Sinceyy: = Xp- — V. f(X) ¢ Xj», it follows
At first, since the iterateéx’} lie in a compact sek, there from the property of projection that

must exist an accumulation point fdix*}. Let x denote an (Xp» — Px,. e )" (F — Px,.[yx]) <0,

accumulation point such that _ o
which further implies

%

x= lim x _ S
1€Zp,1— 00 HPXk* [yk*] — X+
for some subsequence indexed By. Since the feasible set < (Xee — Px, [Yee )T (Rie — Yir)

|V, f(X)| cos O .

X is closed,x must also be feasible. Furthermore, since the [Py [Fh] — X
projection mapping and the functighare both continuous, it Canceling the factoff Py, . |
o

V-] — Xi+|| # 0 from both sides
follows that yields
) ; ) . . ; Spr = ||[di=|| = || Px,.[Tr+] — Xp-
i+l i 7 — k k k _
e O = PO = Vi ) = < V. £(5)lcosth
= PX1 [)_(1 - Vle(}_()] — X3 = d1 < MCOSQk*,
and _ where the last inequality follows from (28). Thus, we have
_lim f(x") = f(x). _ .
1€Zo,i— 00 COS ek* Z % (30)

Notice that the function value$f(x?)} are decreasing and

bounded below, therf(x’) — f(x). Since f(x) is twice Now we can use the property (28), (29) and (30) to conclude

continuously differentiable and the feasible $&ts bounded i+1 i+l O it1 — Onx
) ' o T > |45t || > — and 56,1 > ,
it follows that RV g L 2 Ok = oM
forall i € Zo andi > io, wherei is a sufficiently large integer
B = A < oo. . 0 = 0 0 4 ,
h=L3 e K i E X V3, £ ()] < o0 andd.t! denotes the angle betwe&n,,. f(z.t' ) anddit*.

The fourth inequality is due to the sufficient decrease condition

i+1 _ i i+1 i
Il = 1P e — VXk_f(Zktl)] — Pl and the fifth inequality is due to Claim 1. Therefose/is a
Ik = Ve f(2 )] = x5l = [V, f(27))]. - stationary point.

IN
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i ~1.qi i -1 N T i
My'+ oY) = h(y') + 0y V()T d + BT a T h(e)d

< h(y") + o VAT d + Z—Bd|”.
too > Y (fx) = fTH) = Y (Fx) - fF(xTH)
i i€Zo
i i i i T 4

> Z (f(zktl_ﬂ - f(zk"’*'l)) 2 Z (*Claktlvxk*f(zktl_l) dk'f )

1€Zo i€Zo )

21(1 - 1) (Ve F(2f ) dfE)

> NI

1€Zy Rl

i i i+1)2 (31)

s <2c1<1 = c1) (Ve £zt )i | cos B3
= —

iZ, By| it

. . 2

¥ 2e1(1 = e1) (| Vi F (7)) c0s 61)

1€y ( ) " B’V

C1 1-— C1 5]@*

> N R ) o
- Z ( 8ByM? ) + oo,

1>10, 1€ZLo
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